Validation of radiances measured by CERES on Terra & Aqua

Z. Peter Szewczyk G. Louis Smith Kory J. Priestley

SPIE Conference, Barcelona 09/08-12, 2003

Presentation Outline

- CERES on Terra and Aqua
- Scanning experiment for validation
- Data acquisition and processing constraints
- Scatter plots of radiances
- Statistics
- Results
- Conclusions

Clouds and the Earth's Radiant Energy System Instrument

- Narrow field-of-view (15x30km at nadir) scanning radiometer:
 - Shortwave channel (0.3-5μm),
 - Total channel (0.3-100μm),
 - Window channel (8-12µm)
- PFM on board TRMM (1998, failed 06/2000)
- FM1 & FM2 on board Terra (in service from 03/2000)
- FM3 & FM4 on board Aqua (in service from 06/2002)

CERES

Calibration stability monitored with:

- On-board calibration sources (blackbodies, lamps, solar)
- Multi-channel and multi-instrument consistency
- Geophysical validation

Gain drifts can be detected at the 0.1% level, and corrected!

A part of validated data set for the radiation budget since 1984

PAPS for validation

CERES in Programmable Azimuth Plane Scan:

- Scanning Plane follows a prescribed schedule
- Matches the viewing geometry of other instruments
- Increases sampling by an order of magnitude

Examples:

- CERES/TRMM vs. ScaRaB/Resurs (1998)
- CERES/TRMM vs. CERES/Terra (2000)
- CERES/Terra vs. CERES/Aqua (2002)

Terra & Aqua orbits

- \bullet Sun-synchronous, inclination angle $98.2^{\rm o}$ and $81.8^{\rm o}$
- Equator crossing time: 10:30AM and 1:30PM
- about 15 minutes apart at nodes

FM1 scan over Greenland

Unfiltered shortwave radiances at 13:40 on 07/10/2003

FM4 scan over Greenland

Unfiltered shortwave radiances at 13:54 on 07/10/2003

Why Greenland?

Observation site which is the most homogenous:

- FM1 and FM4 15 minutes apart
- Scans orthogonal to the solar plane
- Scanning in every orbit for different scene types

Validation campaign:

- 07/04 08/22, 2002
- 1,000 orbital crossings of about 90 seconds each
- Significant amount of data for statistical analysis

FM1 scanning pattern

Unfiltered shortwave radiances on 07/10/2003

FM4 scanning pattern

Unfiltered shortwave shortwave on 07/10/2003

Data processing constraints

Direct comparison of radiances:

• difference of averages

No time issue:

• Terra – Aqua 15 minutes apart

Spatial noise dominates:

- averaging over 1° x 1° grid-boxes
- at least 20 footprints or 75% of area covered

Matching geometry:

- 10° tolerance for viewing zenith for all three channels
- 20° tolerance for relative azimuth to the Sun for shortwave

Shortwave radiances

Longwave radiance - daytime

Window channel - daytime

Nighttime radiances over Antarctica

Statistics

Direct comparison of radiances:

- Difference over a grid-box and orbital crossing
- Each orbital crossing is an independent sample
- Uncertainty estimated using a 95% confidence level

$$\alpha$$
 - test: $\varepsilon = \frac{t_{\alpha/2}\sigma}{\sqrt{N}}$

Results for all data collected

Radiance	Mean FM4 [Wm ⁻² sr ⁻¹]	Δ mean [Wm ⁻² sr ⁻¹]	Δ mean %	Δσ [Wm ⁻² sr ⁻¹]	N _{orbX}	α–test
SW	88.6	-0.36	-0.4	0.74	508	0.08
LWday	76.7	0.54	0.7	0.18	508	0.02
LWnite	55.1	0.06	0.1	0.1	527	0.01
WNday	5.5	0.05	0.9	0.03	508	0.00
WNnite	3.0	0.03	1.0	0.01	527	0.00

SW radiances over Greenland

Results for Greenland

Radiance	Mean FM4 [Wm ⁻² sr ⁻¹]	Δ mean [Wm ⁻² sr ⁻¹]	∆ mean %	Δσ [Wm ⁻² sr ⁻¹]	N _{orbX}	α–test
SW	159.1	0.24	0.15	1.05	72	0.3

Conclusions

- Validation procedure for FM1 and FM4 was shown to be well planned and executed
- Data analysis fully demonstrated the 1% consistency in radiance measurements
- Experiment was repeated in June, 2003 in an effort to further monitor CERES performance
- CERES instruments have delivered a high quality radiation budget data set since 1998

